If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-3750=0
a = 1; b = 1; c = -3750;
Δ = b2-4ac
Δ = 12-4·1·(-3750)
Δ = 15001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{15001}}{2*1}=\frac{-1-\sqrt{15001}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{15001}}{2*1}=\frac{-1+\sqrt{15001}}{2} $
| 800y+1000y=10800 | | 800y+1000y=1800 | | h-425=118 | | 7.75+27.25x=89.50 | | x=-4=-x+2 | | n+19=72 | | g-4=91 | | g-53=17 | | 94=t+42 | | 8j+8=64 | | 94=t+4 | | 97=q+25 | | -3a+8=-11 | | -3a+8=11 | | 6x+3=8x-1+10x-10 | | 6x+3=8x-1+10x-10=180 | | 85=p+16 | | 6-5y=-36 | | 0.8(3x-2)=X+0.2(X-5) | | r+14=83 | | 9-3c=-15 | | w-50=27 | | z-6=83 | | t+10=68 | | v+37=91 | | 233.280=5(6)^1/3x+2 | | 60=g-5 | | 19g=475 | | 5j=395 | | u/31=9 | | c/12=27 | | u/17=23 |